A CHARACTERIZATION OF $lpha_1$ -FREE ABELIAN GROUPS AND ITS APPLICATION TO THE CHASE RADICAL

BY

KATSUYA EDA

Institute of Mathematics, University of Tsukuba, Sakura-mura Ibaraki, 305, Japan

ABSTRACT

A group A is an \aleph_1 -free abelian group iff A is a subgroup of the Boolean power $\mathbb{Z}^{(B)}$ for some complete Boolean algebra B. The Chase radical $\nu A = \Sigma\{C \le A : \operatorname{Hom}(C, \mathbb{Z}) = 0 \& C \text{ is countable}\}$. The torsion class $\{A : \nu A = A\}$ is not closed under uncountable direct products.

An abelian group A is \aleph_1 -free if any countable subgroup of A is free. \aleph_1 -free abelian groups have been studied by several authors, because Pontrjagin's theorems [22, Section 38] say "A compact abelian group G is connected and locally connected iff the dual group of G is \aleph_1 -free." In the present paper we give a characterization of \aleph_1 -free groups which clarifies why \aleph_1 -free groups are somewhat like torsionless groups, though they are not always torsionless. Using it we investigate the Chase radical. We use the Boolean valued models $V^{(B)}$ from Set Theory [2, 17, 21] and hence we assume the knowledge about them and use the notion and notation in [8] in the context. However, we'll outline direct proofs especially in Remark 4 at the end of this paper. Therefore, the reader can avoid the proofs using Boolean valued models $V^{(B)}$. All groups in this paper are abelian groups and any undefined notion for groups is standard [15]. To state our main results, we define Boolean powers.

For a complete Boolean algebra (cBa) B and a group A, the Boolean power $A^{(B)}$ is the group consisting of functions $f: A \to B$ such that $(f(x): x \in A)$ is a partition of 1 of B, i.e. $f(x) \wedge f(y) = 0$ for distinct x, y and $\bigvee_{x \in A} f(x) = 1$. For $f, g \in A^{(B)}$, (f+g)(x) = b iff $b = \bigvee_{x-u+v} f(u) \wedge f(v)$. This kind of group has been studied in [1, 6, 7, 8, 10, 11, 18]. If A is countable, we need only countable

Received March 22, 1987 and in revised form September 9, 1987

completeness of B to define a Boolean power. In such a case, let \bar{B} be the canonical completion of B; then $A^{(B)}$ is a subgroup of $A^{(\bar{B})}$. Well-known groups $\mathbf{Z}^{\kappa}/\mathbf{Z}^{<\kappa}$ for cardinals κ of uncountable cofinality are isomorphic to $\mathbf{Z}^{(P\kappa/P_{\kappa}\kappa)}$, where

$$\mathbf{Z}^{<\kappa} = \{x \in \mathbf{Z}^{\kappa} : \{\alpha : x(\alpha) \neq 0\} \text{ is of cardinality less than } \kappa\}$$

and $P\kappa$ is the power set of κ and

$$P_{\kappa}\kappa = \{x \in P\kappa : \text{ The cardinality of } x \text{ is less than } \kappa\}.$$

See [5, 10, 11, 24] for those groups.

In Theorem 1 the equivalence of (1) and (2) is due to Kueker [20, Corollary 3.6] and Ellentuck [13].

Theorem 1. The following propositions are equivalent for an abelian group A:

- (1) A is \aleph_1 -free;
- (2) (Kueker-Ellentuck) A^{\vee} is free in $V^{(B)}$ for some complete Boolean algebra (cBa) B;
 - (3) A^{\vee} is torsionless in $V^{(B)}$ for some cBa B;
 - (4) A is a subgroup of the Boolean power $\mathbb{Z}^{(B)}$ for some cBa B.

Let vA be the Chase radical, i.e.

$$vA = \bigcap \{ \operatorname{Ker}(h) : h \in \operatorname{Hom}(A, X) \text{ and } X \text{ is } \aleph_1\text{-free} \}.$$

THEOREM 2. The following propositions are equivalent for an abelian group A and an element a of A.

- (1) a belongs to vA;
- (2) For every cBa B and $h \in \text{Hom}(A, \mathbb{Z}^{(B)}), h(a) = 0$;
- (3) For every cBa B, $[\![\forall h \in \text{Hom}(A^{\vee}, \mathbb{Z})(h(a^{\vee}) = 0)]\!]^{(B)} = 1;$
- (4) a belongs to $\Sigma\{C \leq A : \text{Hom}(C, \mathbb{Z}) = 0 \& C \text{ is countable}\}.$

COROLLARY 3. The following propositions are equivalent for an abelian group A:

- (1) vA = A;
- (2) $\operatorname{Hom}(A, \mathbf{Z}^{(B)}) = 0$ for every cBa B;
- (3) $\operatorname{Hom}(A^{\vee}, \mathbb{Z}) = 0$ in $V^{(B)}$ for every cBa B;
- (4) $A = \Sigma \{C \le A : \text{Hom}(C, \mathbb{Z}) = 0 \text{ and } C \text{ is countable} \}.$

COROLLARY 4. The Chase radical v satisfies the cardinal condition.

This answers a question in [14]. See [5, 14] for the definition of the cardinal condition and related notions. In [5, Theorem 5.1] it has been shown that the torsion class

$$\{A: vA = A\} = \{Q, \oplus, E\}\{H\},$$
 where $H = \bigoplus [C: \operatorname{Hom}(C, \mathbf{Z}) = 0 \text{ and } C \text{ is countable}].$

Corollary 3 implies that $\{A : \nu A = A\} = \{Q, \oplus \}\{H\}$ with the same H.

THEOREM 5. Let A be a countable group and $\operatorname{Hom}(A, \mathbb{Z}) = 0$. Then, there exists a torsionfree group G of rank 1 such that $\operatorname{Hom}(A, G) = 0$ and $\operatorname{Hom}(G, \mathbb{Z}) = 0$.

COROLLARY 6. The torsion class $\{A : vA = A\}$ is not closed under uncountable direct products.

This answers a question of [5, Section 5] affirmatively.

1. Proofs of Theorems 2 and 3 and related consequences

LEMMA 7 (Pontrjagin [15, Theorem 19.1]). For a torsionfree group A, A is \aleph_1 -free iff any subgroup of A of finite rank is free. Consequently, a countable torsionfree group A is free, if any subgroup of A of finite rank is free.

LEMMA 8. Let A be a torsionfree group and X a subset of A. Then. A^{\vee} is torsionfree and the pure closure $\langle X^{\vee} \rangle_*$ is equal to $(\langle X \rangle_*)^{\vee}$ in $V^{(B)}$ for a cBa B.

PROOF. We check the absoluteness of notions concerning Boolean valued models. A is torsionfree iff $\forall a \in A \ \forall n \in \mathbb{Z}$ (na = 0 implies n = 0 or a = 0). For an $a \in A$, a belongs to $\langle X \rangle_*$ iff there exist $n_0 \cdots n_k \in \mathbb{Z}$ and $a_1 \cdots a_k \in X$ such that $n_0 \neq 0$ and $n_0 a + n_1 a_1 + \cdots + n_k a_k = 0$. Since the notion of finite subsets is absolute, the lemma holds.

PROOF OF THEOREM 1. (1) \rightarrow (2). Let B be a cBa for which A is countable in $V^{(B)}$. For example, let B be the Boolean algebra consisting of all regular open subsets of A^N , where A is discrete and A^N is endowed with the product topology [17, 21]. Then, A^{\vee} is \aleph_1 -free and hence a free group of countable rank in $V^{(B)}$ by Lemmas 7 and 8.

- $(2) \rightarrow (3)$. Clear.
- (3) \rightarrow (4). If A is torsionless in $V^{(C)}$ for a cBa C, taking a large enough I we get an $i \in V^{(C)}$ such that

 $[i: A^{\vee} \to \mathbf{Z}^{I^{\vee}}]$ is an injective homomorphism $]^{(C)} = 1$.

Then, the mapping a to $i(a^{\vee})$ is an injective homomorphism from A into $(\mathbf{Z}^{I^{\vee}})^{\wedge}$. Since $\mathbf{Z} = \mathbf{Z}^{\vee}$ in $V^{(C)}$, $\mathbf{Z}^{\wedge} \simeq \mathbf{Z}^{(C)}$ and hence $(\mathbf{Z}^{I^{\vee}})^{\wedge} \simeq (\mathbf{Z}^{(C)})^{I}$. Let B be the direct product C^{I} of copies of the Boolean algebra C. Then, $\mathbf{Z}^{(B)} \simeq (\mathbf{Z}^{(C)})^{I}$. Hence, A is isomorphic to a subgroup of $\mathbf{Z}^{(B)}$.

(4) \rightarrow (1). It is enough to show that $\mathbb{Z}^{(B)}$ is \aleph_1 -free for any cBa B. Let f_1, \ldots, f_n be elements of $\mathbb{Z}^{(B)}$. There exists a partition $(b_m : m \in N)$ of 1 of B such that $b_m \wedge f_i(a) \neq 0$ iff $b_m \leq f_i(a)$ for each $m \in N$, $a \in \mathbb{Z}$, $1 \leq i \leq n$. Let

$$S = \{ f \in \mathbb{Z}^{(B)} : b_m \land f(a) \neq 0 \text{ iff } b_m \leq f(a) \text{ for any } m \in \mathbb{N}, a \in \mathbb{Z} \}.$$

Then, S is isomorphic to \mathbb{Z}^N or free group of finite rank and $\langle f_1 \cdots f_n \rangle_*$ is a subgroup of S. Since \mathbb{Z}^N is \aleph_1 -free [15, Theorem 19.2] $\langle f_1 \cdots f_n \rangle_*$ is free and hence $\mathbb{Z}^{(B)}$ is \aleph_1 -free by Lemma 7.

For embedding an \aleph_1 -free group A to $\mathbf{Z}^{(B)}$, let C be $\mathrm{RO}(A^N)$, i.e. the cBa indicated in the proof of $(1) \rightarrow (2)$, then $B(=C^N)$ is isomorphic to $\mathrm{RO}(A^N)$. Hence, one might think that B can be taken as not such a complicated one. However, since any cBa can be completely embedded into such a kind of cBa's [19], we cannot say that $\mathrm{RO}(A^N)$ has a simple structure to embed A. If B is a cBa and completely distributive, then B is atomic [23, 25.2] and so $\mathbf{Z}^{(B)}$ is a direct product of \mathbf{Z} . Hence, if we can embed A into $\mathbf{Z}^{(B)}$ where B has high distributivity, then it means that A is near to be torsionless. More precisely, let κ be the cardinal of A and B a κ -representable Boolean algebra [23, Section 29]. If A is a subgroup of $\mathbf{Z}^{(B)}$, then A is torsionless.

PROOF OF THEOREM 2. $(1) \rightarrow (2)$. Clear by the equivalence of (1) and (4) of Theorem 1.

- $(2) \rightarrow (3)$. Suppose the negation of (3), then by the maximum principle [2] there exists an $h \in (\text{Hom}(A^{\vee}, \mathbb{Z}))^{\wedge}$ such that $[h(a^{\vee}) \neq 0]^{(B)} \neq 0$. The mapping a to $h(a^{\vee})$ is a homomorphism from A to $\mathbb{Z}^{(B)}$ under the isomorphism $\mathbb{Z}^{\wedge} \simeq \mathbb{Z}^{(B)}$ and $h(a^{\vee}) \neq 0$.
- (3) \rightarrow (4). Suppose the negation of (4), then there exists an $a_0 \in A$ such that for any countable subgroup C of A containing a_0 ,

$$a_0 \notin \bigcap \{ \operatorname{Ker}(h) : h \in \operatorname{Hom}(C, \mathbb{Z}) \}$$

by the proof of Stein's lemma [15, Corollary 19.3]. Let P be the set

 $\{\sigma: \text{dom } \sigma \text{ is a countable subgroup of } A \& a_0 \in \text{dom } \sigma \& \sigma \in \text{Hom}(\text{dom } \sigma, Z) \& \sigma(a_0) \neq 0 \& \sigma \text{ can be extended to any countable subgroup which includes dom } \sigma \}.$

The partial ordering of P is defined by the extension as functions, i.e. $\sigma \le \tau$ iff σ is an extension of τ . Since the proof of the nonemptiness of P is similar to the following one, we omit it. Let

$$D_x = \{ \sigma \in P : x \in \text{dom } \sigma \}$$
 for each $x \in A$.

Now, we show that D_x is dense in P. Suppose the negation, then there exists a $\tau \in P$ with the following: For any $h \in \text{Hom}(\text{dom }\tau + \langle x \rangle, \mathbb{Z})$ which extends τ , there exists a countable subgroup C_h such that h cannot be extended onto C_h . Since such h is determined by the value at x, there exists only countably many such h's. Hence, there exists a countable subgroup C such that any such h cannot be extended to C. However, τ can be extended to C and the restriction of the extension to dom $\tau + \langle x \rangle$ must be one of the above h, which is a contradiction. Now, let B be the cBa related to P, i.e. the Boolean algebra of all the regular open subsets of P where $U_{\sigma} = \{\tau \in P : \tau \leq \sigma\}$ is a basic open set for each $\sigma \in P$. Then, for the generic filter G of P^{\vee} , $\bigcup G$ is a homomorphism from A^{\vee} to \mathbb{Z} such that $\bigcup G(a^{\vee}) \neq 0$ in $V^{(B)}$.

$$(4)\rightarrow (1)$$
. Clear.

Since the direct proof of $(2) \rightarrow (4)$ is not so complicated in comparison with that of $(1) \rightarrow (4)$ of Theorem 1, we present it here. Suppose the negation of (4). We define a map $\varphi : A \rightarrow \mathbb{Z}^{(B)}$, where P, B and U_{σ} are as in the proof of $(3) \rightarrow (4)$. For $x \in A$, $n \in \mathbb{Z}$ let

$$\varphi(x)(n) = \bigvee \{ U_{\sigma} : \sigma \in P \& x \in \text{dom } \sigma \& \sigma(x) = n \}.$$

If $\sigma(x) \neq \tau(x)$ holds for σ , $\tau \in P$, then $U_{\sigma} \wedge U_{\tau} = 0$. $\forall \{U_{\sigma} : \sigma \in D_x\} = 1$ for each $x \in A$, as shown in the proof. Therefore, $(\varphi(x)(n) : n \in \mathbb{Z})$ is a partition of 1 for each $x \in A$. $\varphi(a_0) \neq 0$ is clear. The following fact implies that φ is a homomorphism:

$$\forall \rho \in U_{\sigma} \cap U_{\tau}(\sigma, \tau \in D_x \cap D_y \text{ imply } \rho(x+y) = \rho(x) + \rho(y)).$$

Now, Corollary 3 follows from Theorem 2. In [3] it was shown that $\nu\nu = \nu$ holds and for a countable group C, $\nu C = C$ iff $\operatorname{Hom}(C, \mathbb{Z}) = 0$. Hence, Corollary 4 follows from Theorem 2.

LEMMA 9. Let κ be an uncountable regular cardinal and G a group of cardinality less than κ . For a group A the following (1) and (2) are equivalent:

- (1) $A = \Sigma \{X \le A : \text{Hom}(X, G) = 0 \text{ and the cardinality of } X \text{ is less than } \kappa \}$;
- (2) For any $a \in A$ and nonzero $g \in G$, there exists a subgroup C of cardinality less than κ such that $a \in C$ and for any $h \in \text{Hom}(C, G)$, $h(a) \neq g$.

PROOF. The implication $(1) \rightarrow (2)$ is clear. Let C_{ag} be a subgroup which satisfies the condition of (2) for each $a \in A$ and nonzero $g \in G$. Let

$$C_a = \Sigma \{ C_{ag} : g \in G \& g \neq 0 \},$$

then the cardinality of C_a is less than κ . Define $E_1 = \langle a \rangle$ and $E_{n+1} = \Sigma \{C_x : x \in E_n\}$ and let $C = \sum_{n \in N} E_n$. Then, $\operatorname{Hom}(C, G) = 0$ and the cardinality of C is less than κ and C contains a.

By Lemma 9 we can relax the condition of supercompactness to that of compactness in [4, Theorem 2.3]. This answers a question of [4] affirmatively. Next we generalize a part of Theorem 2 and Corollary 3.

THEOREM 10. Let G be a countable group, $R_G^*A = \bigcap \{ \operatorname{Ker}(h) : h \in \operatorname{Hom}(A, G) \}$ and $R_G^*A = \bigcap \{ \operatorname{Ker}(h) : h \in \operatorname{Hom}(A, G^{(B)}) \& B \text{ is a cBa} \}$. Then, $R_G^*A = \sum \{ R_G C : C \text{ is a countable subgroup of } A \}$. Consequently, $\operatorname{Hom}(A, G^{(B)}) = 0$ for every cBa B iff

$$A = \Sigma \{ C \leq A : C \text{ is countable & } Hom(C, G) = 0 \}.$$

PROOF. Let C be a countable group, $h \in \text{Hom}(C, G^{(B)})$ for a cBa B and $h(c) \neq 0$ for a $c \in C$. Since C is countable, by the so-called Rasiowa-Sikorski Lemma [2, p. 5; 21], there exists an ultrafilter F of B such that $h(c)(g^*) \in F$ for some nonzero $g^* \in G$ and for each $x \in C$ there exists a unique $g \in G$ so that $h(x)(g) \in F$. Define $\varphi(x) = g$ by $h(x)(g) \in F$. Then, φ is a nonzero homomorphism from C to G, since F is a filter and $h(c)(g) \in F$. Hence, $R_G C = R_G^* C$ and so

$$\Sigma \{R_GC : C \text{ is a countable subgroup of } A\} \subset R_G^*A$$
.

For the converse inclusion, the same proof of $(2) \rightarrow (4)$ of Theorem 2 goes. For the second proposition, it is enough to observe that

$$A = \Sigma \{R_G C : C \text{ is a countable subgroup of } A\}$$

iff $A = \Sigma \{C \le A : \text{Hom}(C, G) = 0 \& C \text{ is countable}\}\$ by Lemma 9.

2. Proofs of Theorem 5 and Corollary 6 and remarks

Any torsionfree group of rank 1 can be identified by its type t and isomorphic to a subgroup of the rational group Q [16, Section 85]. Let R_t be a torsionfree group of rank 1 with its type t.

PROOF OF THEOREM 5. Starting from the type t_0 containing the characteristic (1, 1, 1, ...), we get a sequence of types $\{t_\alpha: \alpha < \kappa\}$ with the following: κ is a regular and uncountable cardinal; $0 < t_\beta < t_\alpha$ for $\alpha < \beta < \kappa$; $0 = \inf\{t_\alpha: \alpha < \kappa\}$. This can be done, because the order structure between 0 and t_0 is isomorphic to the quotient Boolean algebra of P(N) modulo finite subsets and so we cannot reach 0 by a countable sequence [17, p, 261]. Let

$$r_{\alpha}A = \bigcap \{ \text{Ker}(h) : h \in \text{Hom}(A, R_{t_{\alpha}}) \} \text{ for each } \alpha < \kappa.$$

Then, $r_{\alpha}A \leq r_{\beta}A$ for $\alpha \leq \beta$. Since A is countable, there exists a γ such that $r_{\alpha}A = r_{\gamma}A$ for every $\alpha \geq \gamma$. Let $C = A/r_{\gamma}A$, then $r_{\alpha}C = 0$ for every $\alpha \geq \gamma$, i.e. C is isomorphic to a subgroup of $(R_{t_{\alpha}})^{N}$. Now, we shall show that C is free. Let F be a subgroup of C of finite rank. Since $Hom(F, \mathbb{Q})$ is countable, the set of types $\{t: R_{t} \text{ is a homomorphic image of } F\}$ is countable. Hence, there exists a $\beta \geq \gamma$ such that h(F) = 0 or $h(F) \simeq \mathbb{Z}$ for any $h \in Hom(F, R_{t_{\beta}})$. Since F is isomorphic to a subgroup of $(R_{t_{\beta}})^{N}$, F is isomorphic to a subgroup of \mathbb{Z}^{N} and hence is free by [15, Theorem 19.2]. Therefore, C is free by Lemma 7. By the assumption, $Hom(C, \mathbb{Z}) = 0$ and so C = 0. i.e. $A = r_{\gamma}A$ and $Hom(A, R_{t_{\gamma}}) = 0$. The group $R_{t_{\gamma}}$ is a desired one.

As remarked in [5, Section 5], the torsion class $\{X : \nu X = X\}$ is closed under countable direct products. However, it is not closed under uncountable direct products as Corollary 6 shows and also conjectured in [5, p. 101].

PROOF OF COROLLARY 6. Let $A = \prod_{\alpha < \kappa} R_{t_{\alpha}}$, where $R_{t_{\alpha}}$ ($\alpha < \kappa$) are the ones defined in the proof of Theorem 5 and $a^* \in A$ such that $a^*(\alpha) \neq 0$ for any $\alpha < \kappa$. Clearly, $\nu R_{t_{\alpha}} = R_{t_{\alpha}}$ for each $\alpha < \kappa$. If $\operatorname{Hom}(C, \mathbb{Z}) = 0$ for a countable subgroup of A, then C cannot contain a^* as shown in the proof of Theorem 5. Hence, a^* does not belong to νA by Theorem 2, i.e. $\nu A \neq A$.

REMARKS. (1) A group $Z^{(B)}$ has a canonical maximal free pure subgroup $\bar{Z}^{(B)}$ (= $\{x: x(n) = 0 \text{ for all but finite } n \in \mathbb{Z}\}$). Since $\bar{Z}^{(B)}$ is isomorphic to the group consisting of all integer valued continuous functions from the stone space of B, the rank of $\bar{Z}^{(B)}$ is equal to the topological weight of the stone space of B [12, Corollary 2.5].

- (2) As in the remark following the proof of Theorem 1, any \aleph_1 -free group can be embedded into a group $\mathbb{Z}^{(B)}$ where $B = \mathrm{RO}(I^N)$ for some I. Since such a B has a system $\{b_{n0}, b_{n1} : n \in N\}$ such that $b_{n0} \vee b_{n1} = 1$ and $\bigwedge_{n \in N} b_{nf(n)} = 0$ for any $f: N \to \{0, 1\}$, B has no countably complete maximal filter. Hence, $\mathrm{Hom}(\mathbb{Z}^{(B)}, \mathbb{Z}) = 0$ by [8, Theorem 1].
- (3) The size of κ in the proof of Theorem 5 has been studied in set theory [17, 21] and in some models of set theory κ is ω_1 even though 2^{κ_0} is a larger regular cardinal.
- (4) After the completion of this paper, the author has found other proofs of the implication $(1) \rightarrow (4)$ of Theorem 1 and the equivalence of (1) and (4) of Theorem 2, using reduced products [4]. Here we outline them. Dugas [4] proved that a group A is \aleph_1 -free iff A is isomorphic to a subgroup of a reduced product of the group Z by a countably complete filter. Since a reduced power of a countable group by a countably complete filter is isomorphic to a Boolean power by a countably complete Boolean algebra [11], we can show the implication $(1) \rightarrow (4)$ of Theorem 1. For the equivalence of (1) and (4) of Theorem 2, what we need are a reduced product X of Z and a homomorphism $h: A \to X$ for an $a_0 \notin \Sigma \{C \le A : \text{Hom}(C, \mathbb{Z}) = 0 \& C \text{ is countable}\}$ $(=\Sigma \{R_{\mathbf{Z}}C: C \text{ is a countable subgroup of } A\})$ so that $h(a_0) \neq 0$. Let I be the set of all countable subsets of A. For each $Y \in I$, let $h_Y : \langle Y \rangle \to \mathbb{Z}$ be a homomorphism so that $h_Y(a_0) \neq 0$ if $a_0 \in \langle Y \rangle$ and F the canonical countably complete filter of I generated by $\{Y \in I : a \in Y\}$ $(a \in A)$. Then, there exists canonical homomorphisms $i: A \to \Pi_{Y \in I}(Y)/F$ and $h^*: \Pi_{Y \in I}(Y)/F \to \Pi_{Y \in I} \mathbb{Z}/F$, where the reduced product $\Pi_{Y \in I}(Y)/F$ is the quotient group of $\Pi_{Y \in I}(Y)$ by the subgroup $\{f \in \Pi_{Y \in I}(Y) : \{Y : f(Y) = 0\} \in F\}$ and h^* is induced by $(h_Y : Y \in I)$. Then, $h^* \cdot i$ and $\Pi_{Y \in I} \mathbb{Z}/F$ are the desired h and X respectively. In addition we remark the following fact can be proved using reduced products [9].

For a radical R and a regular cardinal κ , let

 $R^{[\kappa]}A = \Sigma \{RC : C \text{ is a subgroup of } A \text{ of cardinality less than } \kappa \}$

[5]. Then, $R^{[\kappa]}$ is also a radical, i.e. $R^{[\kappa]}(A/R^{[\kappa]}A) = 0$ for every A.

REFERENCES

- 1. S. Balcerzyk, On groups of functions on Boolean algebras, Fund. Math. 50 (1962), 347-367.
- 2. J. Bell, Boolean Valued Models and Independence Proofs in Set Theory, Oxford Univ. Press (Clarendon), London-New York, 1977.
- 3. S. U. Chase, On group extensions and a problem of J. H. C. Whitehead, in Topics in Abelian Groups, Scott-Foreman, Chicago, 1963, pp. 173-193.

- 4. M. Dugas, On reduced products of abelian groups, Rend. Sem. Mat. Univ. Padova 73 (1985), 41-47.
 - 5. M. Dugas and R. Goebel, On radicals and products, Pacific J. Math. 118 (1985), 79-104.
- 6. K. Eda, On a Boolean power and a direct product of abelian groups, Tsukuba J. Math. 6 (1982), 187-194.
- 7. K. Eda, Almost slender groups and Fuchs-44-groups, Comment. Math. Univ. St. Paulli 32 (1983), 131-135.
 - 8. K. Eda, On a Boolean power of a torsionfree abelian group, J. Algebra 82 (1983), 84-93.
 - 9. K. Eda, Cardinality restrictions of preradicals, to appear.
 - 10. K. Eda and Y. Abe, Compact cardinals and abelian groups, Tsukuba J. Math., to appear.
- 11. K. Eda and K. Hibino, On Boolean powers of the group **Z** and (ω, ω) -weak distributivity, J. Math. Soc. Japan **36** (1984), 619-628.
- 12. K. Eda and H. Ohta, On abelian groups of integer-valued continuous functions, their Z-duals and Z-reflexivity, in Abelian Group Theory, Gordon and Greach, New York-Lonon, 1987, pp. 241-258.
 - 13. E. Ellentuck, Categoricity regained, J. Symbolic Logic 41 (1976) 639-643.
- 14. T. H. Fay, E. P. Oxford and G. L. Walls, *Preradicals induced by homomorphisms*, in *Abelian Group Theory*, Lecture Notes in Math. 1006, Springer, Berlin, 1983, pp. 660-670.
 - 15. L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press, New York, 1970.
 - 16. L. Fuchs, Infinite Abelian Groups, Vol. 2, Academic Press, New York, 1973.
 - 17. T. Jech, Set Theory, Academic Press, New York, 1978.
- 18. S. Kamo, On the slender property of certain Boolean algebras, J. Math. Soc. Japan 38 (1986), 493-500.
- 19. S. Kripke, An extension of a theorem of Gaifman-Hales-Solovay, Fund. Math. 61 (1967), 29-32.
- 20. D. W. Kueker, Countable approximations and Loewenheim-Skolem Theorems, Ann. Math. Logic 11 (1977), 57-103.
 - 21. K. Kunen, Set Theory, North-Holland, Amsterdam-New York, 1980.
- 22. L. S. Pontrjagin, *Topological Groups*, second edition, Gordon and Breach, New York-London, 1966.
 - 23. R. Sikorski, Boolean Algebras, Springer, Berlin-Heidelberg, 1969.
- 24. B. Wald, On κ-products modulo μ-products, in Abelian Group Theory, Lecture Notes in Math. 1006, Springer, Berlin, 1983, pp. 362-370.